Image
image
image
image


Publications

Complete List of Publications

Research Publications:

Note: The number of citations that each publication has received between the time it was published and August 18, 2015 is indicated in parentheses before the article title.
Current H factor = 40 (on August 18, 2015)


Thomson Scientific, the publishers of the Institute of Scientific Information Web of Knowledge determined in 2003 that publications numbered 19 and 20 below had received 82 and 72 citations, respectively, since 2000 placing them in the top 1% of papers cited within this field. According to “Essential Science Indicators” this indicates that these works are highly influential and making a significant impact in my field.

Publication number 19 was the 10th most cited paper in 2003 in the Journal of Physical Chemistry having received 71 citations in 2003, and was only 6 citations behind the most cited paper.

Publication numbers 59 and 60 were the 3rd and 4th most cited papers between 2007 and 2010 in the Journal of Physical Chemistry, and were only 7 and 8 citations behind the most cited paper, respectively.


  1. (4) Photochemical Aromatic Cyclohexylation
    Michael Kurz and Mary Rodgers
    J. Chem. Soc. Chem. Comm. 18, 1227-1228 (1985)
    DOI: 10.1039/C39850001227


  2. (112) Low-Energy Collision-Induced Dissociation of Deprotonated Dinucleotides: Determination of the Energetically-Favored Dissociation Pathways and the Relative Acidities of the Nucleic Acid Bases
    M. T. Rodgers, Sherrie Campbell, Elaine M. Marzluff and J. L. Beauchamp
    Int. J. Mass Spectrom. Ion Proc. 137, 121-149 (1994)
    DOI: 10.1016/0168-1176(94)04029-X


  3. (52) Proton Affinities and Photoelectron Spectra of Phenylalanine, N-Methyl- and N,N-Dimethyl-Phenylalanine. Implications for N-Methylation as an Approach to Charge Localization in Peptides
    Sherrie Campbell, Elaine M. Marzluff, M. T. Rodgers, J. L. Beauchamp, Margaret E. Rempe, Kimberly F. Schwinck and D. L. Lichtenberger
    J. Am. Chem. Soc. 116, 5257-5264 (1994)
    DOI: 10.1021/ja00091a033


  4. (39) Collisional Activation of Large Molecules is an Efficient Process
    Elaine M. Marzluff, Sherrie Campbell, M. T. Rodgers, and J. L. Beauchamp
    J. Am. Chem. Soc. 116, 6947-6948 (1994)
    DOI: 10.1021/ja00094a064


  5. (74) Low-Energy Dissociation of Small Deprotonated Peptides in the Gas Phase
    Elaine M. Marzluff, Sherrie Campbell, M. T. Rodgers, and J. L. Beauchamp
    J. Am. Chem. Soc., 116, 7787-7796 (1994)
    DOI: 10.1021/ja00096a040


  6. (90) Structural and Energetic Constraints on Gas-Hase Hydrogen/Deuterium Exchange Reactions of Protonated Peptides with D2O, CD3OD, CD3CO2D and ND3
    Sherrie Campbell, M. T. Rodgers, Elaine M. Marzluff and J. L. Beauchamp
    J. Am. Chem. Soc. 116, 9765-9766 (1994)
    DOI: 10.1021/ja00100a058


  7. (47) Site-Specific Protonation Directs Low-Energy Dissociation Pathways in the Gas Phase
    M. T. Rodgers, Sherrie Campbell, Elaine M. Marzluff and J. L. Beauchamp
    Int. J. Mass Spectrom. Ion Processes, 148, 1-23 (1995)
    DOI: 10.1016/0168-1176(95)04177-M


  8. (318) Deuterium Exchange Reactions as a Probe of Biomolecule Structure. Fundamental Studies of Gas Phase H/D Exchange Reactions of Protonated Glycine Oligomers with D2O, CD3OD, CD3CO2D, and ND3
    Sherrie Campbell, M. T. Rodgers, Elaine M. Marzluff and J. L. Beauchamp
    J. Am. Chem. Soc., 117, 12840-12854 (1995)
    DOI: 10.1021/ja00156a023


  9. (14) Site-Specific Lithium Ion Attachment Directs Low-Energy Dissociation Pathways of Dinucleotides in the Gas Phase. Applications to Nucleic Acid Sequencing by Mass Spectrometry
    M. T. Rodgers and J. L. Beauchamp
    Int. J. Mass Spectrom. Ion Processes, 161, 193-216 (1997)
    DOI: 10.1016/S0168-1176(96)04435-7


  10. (353) Statistical Modeling of Collision-Induced Dissociation Thresholds
    M. T. Rodgers, K. M. Ervin and P. B. Armentrout
    J. Chem. Phys. 106, 4499-4508 (1997)
    DOI: 10.1063/1.473494


  11. (204) Collision-Induced Dissociation Measurements on Li+(H2O)n, n = 1 - 6: the First Direct Measurement of the Li+-OH2 Bond Energy
    M. T. Rodgers and P. B. Armentrout
    J. Phys. Chem. A 101, 1238-1249 (1997)
    DOI: 10.1021/jp962170x


  12. (110) Absolute Binding Energies of Lithium Ions to Short Chain Alcohols, CnH2n+2O, n = 1 - 4, Determined by Threshold Collision-Induced Dissociation
    M. T. Rodgers and P. B. Armentrout
    J. Phys. Chem. A 101, 2614-2625 (1997)
    DOI: 10.1021/jp970154+


  13. (50) Guided Ion Beam Studies of the Reactions of Vn+ (n = 2-17) with O2: Bond Energies and Dissociation Pathways
    J. Xu, M. T. Rodgers, J. B. Griffin and P. B. Armentrout
    J. Chem. Phys. 108, 9339-9350 (1998)
    DOI: 10.1063/1.476386


  14. (189) Statistical Modeling of Competitive Threshold Collision-Induced Dissociation
    M. T. Rodgers and P. B. Armentrout
    J. Chem. Phys. 109, 1787-1800 (1998)
    DOI: 10.1063/1.476754

  15. (57) Reactions of Cu+(1S, 3D) with O2, CO, CO2, H2O, N2, NO and N2O Studied by Guided Ion Beam Mass Spectrometry
    M. T. Rodgers, B. Walker and P. B. Armentrout
    Int. J. Mass Spectrom. 182/183, 99-120 (1999). Ben S. Freiser Memorial Issue.
    DOI: 10.1016/S1387-3806(98)14228-8

  16. (69) Absolute Alkali Metal Ion Binding Affinities of Several Azoles Determined by Threshold Collision-Induced Dissociation
    M. T. Rodgers and P. B. Armentrout
    Int. J. Mass Spectrom. 185/186/187, 359-380 (1999). Michael T. Bowers Special Issue.
    DOI: 10.1016/S1387-3806(98)14134-9


  17. (74) Absolute Binding Energies of Sodium Ions to Short Chain Alcohols, CnH2n+2O, n=1-4, Determined by Threshold Collision-Induced Dissociation Experiments and Ab Initio Theory
    M. T. Rodgers and P. B. Armentrout
    J. Phys. Chem. A. 103, 4955-4963 (1999)
    DOI: 10.1021/jp990656i


  18. (61) Absolute Alkali Metal Ion Binding Affinities of Several Azines Determined by Threshold Collision-Induced Dissociation
    R. Amunugama and M. T. Rodgers
    Int. J. Mass Spectrom. 195/196, 439-457 (2000). Robert R. Squires Memorial Issue.
    DOI:10.1016/S1387-3806(99)00145-1


  19. (230) An Absolute Sodium Cation Affinity Scale: Threshold Collision-Induced Dissociation Experiments and Ab Initio Theory
    P. B. Armentrout and M. T. Rodgers
    J. Phys. Chem. A. 104, 2238-2247 (2000)
    DOI: 10.1021/jp991716n


  20. (274) Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation
    M. T. Rodgers and P. B. Armentrout
    Mass Spectrom. Rev. 19, 215-247 (2000)
    DOI: 10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X


  21. (196) Noncovalent Interactions of the Nucleic Acid Bases (Uracil, Thymine, and Adenine) with Alkali Metal Ions. Threshold Collision-Induced Dissociation and Theoretical Studies
    M. T. Rodgers and P. B. Armentrout
    J. Am. Chem. Soc. 122, 8548-8558 (2000)
    DOI: 10.1021/ja001638d


  22. (83) Periodic Trends in the Binding of Metal Ions to Pyridine Studied by Threshold Collision-Induced Dissociation and Density Functional Theory
    M. T. Rodgers, J. R. Stanley, and R. Amunugama
    J. Am. Chem. Soc.122, 10969-10978 (2000)
    DOI: 10.1021/ja0027923


  23. (96) Substituent Effects in the Binding of Alkali Metal Ions to Pyridines Studied by Threshold Collision-Induced Dissociation and Ab Initio Theory: The Methylpyridines
    M. T. Rodgers
    J. Phys. Chem. A 105, 2374-2383 (2001) Aron Kuppermannn Festschrift
    DOI: 10.1021/jp004055z


  24. (96) Substituent Effects in the Binding of Alkali Metal Ions to Pyridines Studied by Threshold Collision-Induced Dissociation and Ab Initio Theory: The Aminopyridines
    M. T. Rodgers
    J. Phys. Chem. A 105, 8145-8153 (2001)
    DOI: 10.1021/jp011555z


  25. (49) Periodic Trends in the Binding of Metal Ions to Pyrimidine Studied by Threshold Collision-Induced Dissociation and Density Functional Theory
    R. Amunugama and M. T. Rodgers
    J. Phys. Chem. A 105, 9883-9892 (2001)
    DOI: 10.1021/jp010663i


  26. (25) Collision-Induced Dissociation and Theoretical Studies of Na+—Acetonitrile Complexes
    A. B. Valina, R. Amunugama, H. Huang, and M. T. Rodgers
    J. Phys. Chem. A 105, 11057-11068 (2001)
    DOI: 10.1021/jp0128123


  27. (45) Solvation of Copper Ions by Acetonitrile. Structures and Sequential Binding Energies of Cu+(CH3CN)x, x = 1–5 from Collision-Induced Dissociation and Theoretical Studies
    G. Vitale, A. B. Valina, R. Amunugama, H. Huang, and M. T. Rodgers
    J. Phys. Chem. A 105, 11351-11364 (2001)
    DOI: 10.1021/jp076449x


  28. (78) Sigma versus Pi Interactions in Alkali Metal Ion Binding to Azoles: Threshold Collision-Induced Dissociation and Ab Initio Theory Studies
    H. Huang and M. T. Rodgers
    J. Phys. Chem. A 106, 4277-4289 (2002)
    DOI: 10.1021/jp013630b


  29. (80) The Influence of Substituents on Cation-π Interactions 1: Binding Energies of Alkali Metal Cation-Toluene Complexes Determined by Threshold Collision-Induced Dissociation and Theoretical Studies
    R. Amunugama and M. T. Rodgers
    J. Phys. Chem. A 106, 5529-5539 (2002)
    DOI: 10.1021/jp014307b


  30. (80) Influence of d Orbital Occupation on the Binding of Metal Ions to Adenine
    M. T. Rodgers and P. B. Armentrout
    J. Am. Chem. Soc. 124, 2678-2691 (2002)
    DOI: 10.1021/ja011278+


  31. (26) Solvation of Copper Ions by Acetone. Structures and Sequential Binding Energies of Cu+(acetone)x, x = 1–5 from Collision-Induced Dissociation and Theoretical Studies
    Y. Chu, Z. Yang, and M. T. Rodgers
    J. Am. Soc. Mass Spectrom. 13, 453-468 (2002)
    DOI:10.1016/S1044-0305(02)00355-0


  32. (58) The Influence of Substituents on Cation-π Interactions. 2. Binding Energies of Alkali Metal Cation-Fluorobenzene Complexes Determined by Threshold Collision-Induced Dissociation and Theoretical Studies
    R. Amunugama and M. T. Rodgers
    J. Phys. Chem. A 106, 9092-9103 (2002)
    DOI: 10.1021/jp020459a


  33. (75) The Influence of Substituents on Cation-π Interactions. 4. Binding Energies of Alkali Metal Cation-Phenol Complexes Determined by Threshold Collision-Induced Dissociation and Theoretical Studies
    R. Amunugama and M. T. Rodgers
    J. Phys. Chem. A 106, 9718-9728 (2002) Jesse. L. Beauchamp Festschrift
    DOI: 10.1021/jp0211584


  34. (2) "Gas Phase Coordination Chemistry” in Comprehensive Coordination Chemistry II: From Biology to Nanotechnology. Vol. 2: Fundamentals
    M. T. Rodgers and P. B. Armentrout
    Volume Editor, A. B. P. Lever, pp. 141-158 (2003)
    DOI: 10.1016/B0-08-043748-6/01119-1


  35. (64) The Influence of Substituents on Cation-π Interactions. 5. Binding Energies of Alkali Metal Cation-Anisole Complexes Determined by Threshold Collision-Induced Dissociation and Theoretical Studies
    R. Amunugama and M. T. Rodgers
    Int. J. Mass Spectrom. 222, 431-450 (2003) Jesse L. Beauchamp Special Issue
    DOI:10.1016/S1387-3806(02)00945-4


  36. (42) Cation-π Interactions with a Model for an Extended π Network: Binding Energies of Alkali Metal Cation-Naphthalene Complexes Determined by Threshold Collision-Induced Dissociation and Theoretical Studies
    R. Amunugama and M. T. Rodgers
    Int. J. Mass Spectrom. 227, 1-20 (2003)
    DOI:10.1016/S1387-3806(03)00039-3


  37. (60) The Influence of Substituents on Cation-π Interactions. 3. Binding Energies of Alkali Metal Cation-Aniline Complexes Determined by Threshold Collision-Induced Dissociation and Theoretical Studies
    R. Amunugama and M. T. Rodgers
    Int. J. Mass Spectrom. 227, 339-360 (2003)
    DOI:10.1016/S1387-3806(03)00104-0


  38. (57) Theoretical Studies of the Unimolecular and Bimolecular Tautomerization of Cytosine
    Z. Yang and M. T. Rodgers
    Phys. Chem. Chem. Phys. 6, 2749-2757 (2004)
    DOI: 10.1039/b315089e


  39. (28) Influence of s and d Orbital Occupation of the Binding of Metal Ions to Imidazole
    N. S. Rannulu, R. Amunugama, Z. Yang, and M. T. Rodgers
    J. Phys. Chem. A 108, 6385-6396 (2004)
    DOI: 10.1021/jp048500s


  40. (146) Cation-π Interactions: Structures and Energetics of Complexation of Na+ and K+ with the Aromatic Amino Acids: Phenylalanine, Tyrosine, and Tryptophan
    C. Ruan, and M. T. Rodgers
    J. Am. Chem. Soc. 126, 14600-14610 (2004)
    DOI: 10.1021/ja048297e


  41. (109) A Thermodynamic “Vocabulary” for Metal Ion Interactions in Biological Systems
    M. T. Rodgers and P. B. Armentrout
    Accts. Chem. Res. 37, 989-998 (2004)
    DOI: 10.1021/ar0302843


  42. (57) Influence of Halogenation on the Properties of Uracil and its Noncovalent Interactions with Alkali Metal Ions. Threshold Collision-Induced Dissociation and Theoretical Studies
    Z. Yang and M. T. Rodgers
    J. Am. Chem. Soc. 126, 16217-16226 (2004)
    DOI: 10.1021/ja045375p


  43. (22) Influence of Methylation on the Properties of Uracil and its Noncovalent Interactions with Alkali Metal Ions. Threshold Collision-Induced Dissociation and Theoretical Studies
    Z. Yang and M. T. Rodgers
    Int. J. Mass Spectrom. 241, 225-242 (2005) (Awarded the Best Student Paper published in this Journal in 2005)
    DOI:10.1016/j.ijms.2004.11.018


  44. (25) Solvation of Copper Ions by Imidazole: Structures and Sequential Binding Energies of Cu+Lx, x = 1-4. Competition Between Ion Solvation and Hydrogen Bonding
    N. S. Rannulu and M. T. Rodgers
    Phys. Chem. Chem. Phys. 7, 1014-1025 (2005). Vladimir E. Bondybey Special Issue.
    DOI: 10.1039/b418141g


  45. (54) Cation-π Interactions with a Model for the Side Chain of Tryptophan: Structures and Absolute Binding Energies of Alkali Metal Cation-Indole Complexes
    C. Ruan, Z. Yang, N. Hallowita, and M. T. Rodgers
    J. Phys. Chem. A 109, 11539-11550 (2005) Jack Simons Festschrift
    DOI: 10.1021/jp053830d


  46. (10) Sodium Cation Affinities of MALDI Matrices Determined by Guided Ion Beam Mass Spectrometry: Applications to Benzoic Acid Derivatives
    S. D. M. Chinthaka, Y. Chu, and M. T. Rodgers
    J. Phys. Chem. A 110, 1426-1437 (2006) William L. Hase Festschrift
    DOI: 10.1021/jp054698k


  47. (31) Influence of Thioketo Substitution on the Properties of Uracil and its Noncovalent Interactions of Uracil with Alkali Metal Ions. Threshold Collision-Induced Dissociation and Theoretical Studies
    Z. Yang and M. T. Rodgers
    J. Phys. Chem. A. 110, 1455-1468 (2006) William L. Hase Festschrift
    DOI: 10.1021/jp054849j


  48. (102) Specificity of Human Thymine DNA Glycosylase Depends on N-Glycosidic Bond Stability
    M. T. Bennett, M. T. Rodgers, A. S. Hebert, L. E. Ruslander, L. Eisele, and A. C. Drohat
    J. Am. Chem. Soc. 128, 12510-12519 (2006)
    DOI: 10.1021/ja0634829


  49. (31) Noncovalent Interactions of Cu+ with N-Donor Ligands (Pyridine, 4,4-Dipyridyl, 2,2-Dipyridyl, and 1,10-Phenanthroline): Collision-Induced Dissociation and Theoretical Studies
    N. S. Rannulu and M. T. Rodgers
    J. Phys. Chem. A 111, 3465-3479 (2007)
    DOI: 10.1021/jp066903h


  50. (5) Potassium Cation Affinities of MALDI Matrices Determined by Guided Ion Beam Mass Spectrometry: Applications to Benzoic Acid Derivatives
    S. D. M. Chinthaka and M. T. Rodgers
    J. Phys. Chem. A 111, 8152-8162 (2007)
    DOI: 10.1021/jp0667238


  51. (7) Probing the Potential Energy Landscape for Dissociation of Protonated Indole via Threshold Collision-Induced Dissociation and Theoretical Studies
    Z. Yang, H. Ahmed, and M. T. Rodgers
    Int. J. Mass Spectrom. 265, 388-400 (2007) Jean H. Futrell Honor Issue
    DOI:10.1016/j.ijms.2007.06.016


  52. (43) A Critical Evaluation of the Experimental and Theoretical Determination of Lithium Cation Affinities
    M. T. Rodgers and P. B. Armentrout
    Int. J. Mass Spectrom. 267, 167-182 (2007) Sharon G. Lias Memorial Issue
    DOI:10.1016/j.ijms.2007.02.034


  53. (15) Cation-π Interactions with a π-Excessive Nitrogen Heterocycle: Structures and Absolute Binding Energies of Alkali metal Cation-Pyrrole Complexes
    C. Ruan, Z. Yang, and M. T. Rodgers
    Int. J. Mass Spectrom. 267, 233-247 (2007) Sharon G. Lias Memorial Issue
    DOI:10.1016/j.ijms.2007.02.041


  54. (36) Influence of the d Orbital Occupation on the Nature and Strength of Copper Cation-π Interactions: Threshold Collision-Induced Dissociation and Theoretical Studies
    C. Ruan, Z. Yang, and M. T. Rodgers
    Phys. Chem. Chem. Phys. 9, 5902-5918 (2007)
    DOI: 10.1039/b709820k


  55. (12) Modeling Metal Cation-Phosphate Interactions in Nucleic Acids in the Gas Phase: Alkali Metal Cations and Triethyl Phosphate
    C. Ruan, H. Huang, and M. T. Rodgers
    J. Phys. Chem. A 111, 13521-13527 (2007)
    DOI: 10.1021/jp076449x


  56. (10) A Simple Model for Metal Cation-Phosphate Interactions in Nucleic Acids in the Gas Phase: Alkali Metal Cations and Trimethyl Phosphate
    C. Ruan, H. Huang, and M. T. Rodgers
    J. Am. Soc. Mass Spectrom. 19, 305-314 (2008)
    DOI:10.1016/j.jasms.2007.10.006


  57. (10) Bond Dissociation Energies and Equilibrium Structures of Cu+(MeOH)x, x = 1-6 in the Gas Phase: Competition Between Solvation of the Metal Ion and Hydrogen Bonding Interactions
    Z. Yang, N. S. Rannulu, Y. Chu, and M. T. Rodgers
    J. Phys. Chem. A 112, 388-401 (2008)
    DOI: 10.1021/jp076964v


  58. (15) Synthesis, Redox and Amphiphilic Properties of Responsive Salycilaldimine-Copper (II) Soft Materials
    S. S. Hindo, R. Shakya, N. S. Rannulu, M. J. Heeg, M. T. Rodgers, S. R. P. da Rocha, and C. N. Verani
    Inorg. Chem. 47, 3119-3127 (2008)
    DOI: 10.1021/ic702233n


  59. (97) Infrared Multiphoton Dissociation Spectroscopy of Cationized Serine: Effects of Alkali-Metal Cation Size on Gas-Phase Conformation
    P. B. Armentrout, M. T. Rodgers, J. Oomens, and J. D. Steill
    J. Phys. Chem. A 112, 2248-2257 (2008)
    DOI: 10.1021/jp710885a


  60. (81) Infrared Multiphoton Dissociation Spectroscopy of Cationized Threonine: Effects of Alkali-Metal Cation Size on Gas-Phase Conformation
    M. T. Rodgers, P. B. Armentrout, J. Oomens, and J. D. Steill
    J. Phys. Chem. A 112, 2258-2267 (2008)
    DOI: 10.1021/jp711237g


  61. (27) Chemical Dynamics Symulations of Energy Transfer in Collisions of Protonated Peptide Ions with a Perfluorinated Alkylthiol Self-Assembled Monolayer Surface
    L. Yang, O. A. Mazyar, U. Lourderaj, J. Wang, M. T. Rodgers, E. Martinez-Nunez, S. V. Addepalli, and W. L. Hase
    J. Phys. Chem. C 112, 9377-9386 (2008)
    DOI: 10.1021/jp712069b


  62. (24) Dipole Effects on Cation-π Interactions: Absolute Bond Dissociation Energies of Complexes of Alkali Metal Cations to N-Methylaniline and N,N-dimethylaniline
    N. Hallowita, D. R. Carl, P. B. Armentrout, and M. T. Rodgers
    J. Phys. Chem. A 112, 7996-8008 (2008)
    DOI: 10.1021/jp800434v


  63. (67) Statistical Rate Theory and Kinetic Energy-Resolved Ion Chemistry: Theory and Applications
    P. B. Armentout, K. M. Ervin, and M. T. Rodgers
    J. Phys. Chem. A 112, 10071-10085 (2008)
    DOI: 10.1021/jp805343h


  64. (9) Noncovalent Interactions of Ni+ with N-Donor Ligands (Pyridine, 4,4-Dipyridyl, 2,2-Dipyridyl, and 1,10-Phenanthroline): Collision-Induced Dissociation and Theoretical Studies
    N. S. Rannulu and M. T. Rodgers
    J. Phys. Chem.A 113, 4534-4548 (2009) George C. Schatz Festschrift
    DOI: 10.1021/jp8112045


  65. (12) Inductive Effects on Cation-π Interactions: Structures and Bond Dissociation Energies of Alkali Metal Cation-Halobenzene Complexes
    N. Hallowita, E. Udonkang, C. Ruan, C. E. Frieler, and M. T. Rodgers
    Int. J. Mass Spectrom. 283, 35-47 (2009) Michael T. Bowers Honor Issue
    DOI:10.1016/j.ijms.2009.01.006


  66. (11) Modeling Metal Cation-Phosphate Interactions in Nucleic Acids: Activated Dissociation of Mg+, Al+, Cu+, and Zn+ Complexes of Triethyl Phosphate
    C. Ruan and M. T. Rodgers
    J. Am.Chem. Soc. 131, 10918-10928 (2009)
    DOI: 10.1021/ja8092357


  67. (8) A Modular Approach to Redox-Active Multimetallic Hydrophobes of Discoid Topology
    F. D. Lesh, R. Shanmugam, M. M. Allard, M. Lanznaster, M. J. Heeg, M. T. Rodgers, J. M. Shearer, and C. N. Verani
    Inorg. Chem. 49, 7226-7228 (2010)
    DOI: 10.1021/ic1009626


  68. (33) Infrared Multiple Photon Dissociation Spectroscopy of Cationized Cysteine: Effects of Metal Cation Size on Gas-Phase Conformation
    M. Citir, E. M. S. Stennett, J. Oomens, J. D. Steill, M. T. Rodgers, and P. B. Armentrout
    Int. J. Mass Spectrom. 297, 9-17 (2010) Special Issue on Ion Spectroscopy.
    DOI:10.1016/j.ijms.2010.04.009


  69. (15) Infrared Multiple Photon Dissociation Action Spectroscopy of Protonated Uracil and Thiouracils: Effects of Thioketo-Substitution on Gas-Phase Conformation
    Y.-w. Nei, T. e. Akinyemi, J. D. Steill, J. Oomens, and M. T. Rodgers, Int. J. Mass Spectrom. 297, 139-151 (2010). Special Issue on Ion Spectroscopy
    DOI:10.1016/j.ijms.2010.08.005

  70. (9) Infrared Multiple Photon Dissociation Action Spectroscopy and Theoretical Studies of Diethyl Phosphate Complexes: Effects of Protonation and Sodium Cationization on Structure
    B. S. Fales, N. O. Fujamade, Y.-w. Nei, J. Oomens, and M. T. Rodgers, J. Am. Soc. Mass Spectrom. 22, 81-92 (2011).
    DOI:10.1007/s13361-010-0007-6

  71. (3) Infrared Multiple Photon Dissociation Action Spectroscopy and Theoretical Studies of Triethyl Phosphate Complexes: Effects of Protonation and Sodium Cationization on Structure
    B. S. Fales, N. O. Fujamade, J. Oomens, and M. T. Rodgers, J. Am. Soc. Mass Spectrom. (2011)
    DOI:

  72. (14) Infrared Multiple Photon Dissociation Action Spectroscopy of Sodiated Uracil and Thiouracils: Effects of Thioketo-Substitution on Gas-Phase Conformation
    Y.-w. Nei, T. e. Akinyemi, J. D. Steill, J. Oomens, and M. T. Rodgers, Int. J. Mass Spectrom. (2011). John R. Eyler Special Issue.
    DOI:10.1016/j.ijms.2011.06.019

  73. (8) “Noncovalent Interactions of Zn+ with N-Donor Ligands (Pyridine, 4,4'-Dipyridyl, 2,2'-Dipyridyl, and 1,10-Phenanthroline”,
    N. S. Rannulu and M. T. Rodgers, J. Phys. Chem. A 116, 1319-1332 (2012).
    DOI:10.1021/jp207144b

  74. (32)“Structural and Energetic Effects in the Molecular Recognition of Protonated Peptidomimetic Bases by 18-Crown-6”, Y.Chen and M. T. Rodgers, , J. Am. Chem. Soc. 134, 2313-2324 (2012).
    DOI:10.1021/ja21-2345

  75. (4)“Sodium Cation Affinities of Commonly Used MALDI Matrices Determined by Guided Ion Beam Tandem Mass Spectrometry”, S. D. M. Chinthaka and M. T. Rodgers, J. Am. Soc. Mass Spectrom. 23, 676-689 (2012).
    DOI:10.1007/s13361-012-0336-8 

  76. (10)“Tautomerization in the Formation and Collision-Induced Dissociation of Alkali Metal Cation-Cytosine Complexes”, Z. Yang and M. T. Rodgers, Phys. Chem. Chem. Phys. 14, 4517-4526 (2012).
    DOI:10.1039/c2cp23794f

  77. (26)“Structural and Energetic Effects in the Molecular Recognition of Amino Acids by 18-Crown-6”,
    Y. Chen and M. T. Rodgers, J. Am. Chem. Soc. 134, 5863-5875 (2012).
    DOI: 10.1021/ja211021h

  78. (24)“Metal Cation Dependence of Interactions with Amino Acids: Bond Energies of Cs+ to Gly, Pro, Ser, Thr, and Cys”, P. B. Armentrout, Y. Chen and M. T. Rodgers, J. Phys. Chem. A 116, 3989-3999 (2012).
    DOI:10.1021/jp3012766

  79. (10)“Protonation Preferentially Stabilizes Minor Tautomers of the Halouracils: IRMPD Action Spectroscopy and theoretical Studies”,
    K. T. Crampton, A. I. Rathur, Y.-w. Nei, G. Berden, J. Oomens, and M. T. Rodgers, Int. J. Am. Mass Spectrom 23, 1469-1478 (2012). Peter B. Armentrout Honor Issue
    DOI: 10.1007/s13361-012-0434-7

  80. (16)“Alkali Metal Cation Interactions with 12-Crown-4 in the Gas Phase: Revisited”,
    P. B. Armentrout, C. A. Austin, and M. T. Rodgers, Int. J. Mass Spectrom. 330-332, 16-26 (2012). Peter B. Armentrout Honor Issue
    DOI: 10.1016/j.ijms.2012.06.018

  81. (2)“Re-evaluation of the Proton Affinity of 18-Crown-6 using Competitive Threshold Collision-Induced Dissociation Techniques”,
    Y. Chen M. T. Rodgers, Anal. Chem. 84, 7570-7577 (2012).
    DOI: 10.1021/ac301804j

  82. (7)“Structural and Energetic Effects in the Molecular Recognition of Acetylated Amino Acids by 18-Crown-6”,
    Y. Chen and M. T. Rodgers, J. Am. Soc. Mass Spectrom. 23, 2020-2030 (2012).
    DOI: 10.1007/s13361-012-0466-z

  83. (8)“Alkali Metal Cation-Cyclen Complexes: Effects of Alaki Metal Cation Size on the Structure and Binding Energy”,
    C. A. Austin, Y. Chen, and M. T. Rodgers,
    Int. J. Mass Spectrom. 330-332, 27-34 (2012). Peter B. Armentrout Honor Issue
    DOI: 10.1016/j.ijms.2012.08.033

  84. (9)“Thermochemistry of Alkali Metal Cation Interactions with Histidine: Influence of the Side Chain”,
    P. B. Armentrout, M. Citir, Y. Chen and M. T. Rodgers, J. Phys. Chem. A, 116, 11823-11832 (2012)
    DOI: 10.1021/jp310179c

  85. (13)“Infrared Multiple Photon Dissociation Action Spectroscopy of Deprotonated DNA Mononucleotides: Gas-Phase Conformations and Energetics”,
    Y. -w. Nei, N. Hallowita, J.D. Steill, J. Oomens, and M. T. Rodgers, J. Phys. Chem A 117, 1319-1335 (2013) Peter B. Armentrout Festschrift
    DOI:10.1021/jp3077936

  86. (20)“Metal Cation Dependence of Interactions with Amino Acids: Bond Energies of Rb+ and Cs+ to Met, Phe, tyr, and Trp”,
    P. B. Armentrout, B. Yang and M. T. Rodgers, J. Phys Chem. A 117, 3771-3781 (2013).
    DOI: 10.1021/jp401366g

  87. (2)“Thermochemistry of Non-Covalent Ion-Molecule Interactions”
    P. B. Armentrout and M. T. Rodgers, Mass Spectrometry,2, S0011(2013).
    DOI:10.5702/massspectrometry.S0011

  88. (9)“Energy-Resolved Collision-Induced Dissociation Studies of 1,10-Phenanthroline Complexes of the Late First-Row Divalent Transition Metal Cations: Determination of the Third Sequential Binding Energy”,
    H. Nose, Y. Chen and M. T. Rodgers J. Phys. Chem. A 117, 4316-4330 (2013).
    DOI: 10.1021/jp401711c

  89. (11)“Infrared Multiple Photon Dissociation Action Spectroscopy of Alkali Metal Cation-Cytosine Complexes: Effects of Alkali Metal Cation Size on Gas Phase Conformation”,
    B. Yang, R. R. Wu, N. C. Polfer, G. Berden, J. Oomens, and M. T. Rodgers, J. Am. Soc. Mass Spectrom. 24, 1523-1533 (2013).
    DOI:10.1007/s13361-013-0689-7

  90. (8)“Energy-Resolved Collision-Induced Dissociation Studies of 2,2'-Bipyridine Complexes of the Late First-Row Divalent Transition Metal Cations: Determination of the Third Sequential Binding Energy”,
    H. Nose andM. T. Rodgers, Chem. Phys. Chem. 78, 1109-1123 2013).
    DOI: 10.1002/cplu.201300156


  91. (2)“Infrared Multiple Photon Dissociation Action Spectroscopy of Alkali Metal Cation-Cyclen Complexes: Effects of Alkali Metal Cation Size on Gas-Phase Conformation”,
    C. A. Austin, Y. Chen, C. M. Kaczan, G. Berden, J. Oomens, and M. T. Rodgers, Int. J. Mass Spectrom. 354-355,346-355 (2013).
    DOI: 10.1016/j.ijms.2013.08.004


  92. (3)“Silver Cation Affinities of Monomeric Building Blocks of Polyethers and Polyphenols Determined by Guided Ion Beam Tandem Mass Spectrometry”,,
    Y. Chen, S. D. M. Chinthaka, and M. T. Rodgers, J. Phys. Chem. A 117, 8274-8284 (2013).
    DOI:10.1021/jp402224t


  93. (5)“Infrared Multiple Photon Dissociation Action Spectroscopy of Deprotonated RNA Mononucleotides: Gas-Phase Conformations and Energetics”,
    Y.-w. Nei, K. T. Crampton, G. Berden, J. Oomens, and M. T. Rodgers, J. Phys. Chem. A 117, 10634-10648 (2013).
    DOI:/10.1021/jp4039495


  94. (8)“Base-Pairing Energies of Proton Bound Homodimers Determined by Guided Ion Beam Tandem Mass Spectrometry: Application to Cytosine and 5-Substituted Cytosines”,
    B. Yang, R.R. Wu, and M. T. Rodgers, Anal. Chem. 85, 11000-11006 (2013).
    DOI: 10.1021/ac402542g


  95. (15)“Infrared Multiple Photon Dissociation Action Spectroscopy of Proton-Bound Dimers of Cytosine and Modified Cytosines: Effects of Modifications on Base-Pairing Interactions”,
    B. Yang, R. R. Wu, G. Berden, J. Oomens, and M. T. Rodgers, J. Phys. Chem. B 117, 14191-14201 (2013).
    DOI: 10.1021/jp405105w


  96. (14) “Base-Pairing Energies of Proton-Bound Heterodimers of Cytosine and Modified Cytosines: Implications for the Stability of DNA I-Motif Conformations”,
    B. Yang and M. T. Rodgers, J. Am. Chem. Soc. 136, 282-290 (2013).
    DOI: 10.1021/ja409515v


  97. (2)“Metal Cation Dependence of Interactions with Amino Acids: Bond Dissociation Energies of Rb+ and Cs+ to the Acidic Amino Acids and Their Amide Derivatives”,
    P. B. Armentrout, B. Yang, and M. T. Rodgers, J. Phys. Chem. B 118, 4300-4314 (2014). (Graphics chosen for issue cover)
    DOI: 10.1021/jp5001754


  98. (4)“Alkali Metal Cation Interactions with 15-Crown-5 in the Gas Phase: Revisited”,
    P. B. Armentrout, C. A. Austin, and M. T. Rodgers, J. Phys. Chem. A 118, 8088-8097 (2014). A. Welford Castleman Festschrift
    DOI: 10.1021/jp4116172


  99. (1)“Influence of the d Orbital Occupation on the Structures and Sequential Binding Energies of Pyridine to the Late First-Row Divalent Transition Metal Cations: A DFT Study”,
    H. Nose and M. T. Rodgers, J. Phys. Chem. A 118, 8129-8140 (2014). A. Welford Castleman Festschrift
    DOI: 10.1021/jp500488t


  100. (3)“Alkali Metal Cation Binding Affinities of Cytosine in the Gas Phase: Revisited”,
    B. Yang and M. T. Rodgers, Phys. Chem. Chem. Phys. 16, 16110-16120 (2014).
    DOI: 10.1039/C4CP01128G


  101. (2)“Alkali Metal Cation-Hexacyclen Complexes: Effects of Alkali Metal Cation Size on the Structure and Binding Energy”,
    C. A. Austin and M. T. Rodgers, J. Phys. Chem. A 118, 5488-5500 (2014).
    DOI:10.1021/jp502275q


  102. (3)“Gas-Phase Conformations and Energetics of Protonated 2′-Deoxyguanosine and Guanosine: IRMPD Action Spectroscopy and Theoretical Studies”,
    R. R. Wu, B. Yang, G. Berden, J. Oomens, and M. T. Rodgers, J. Phys. Chem. B 118, 14774-14784 (2014).
    DOI: 10.1021/p508019a


  103. (3)“Base-Pairing Energies of Protonated Nucleobase Pairs and Proton Affinities of 1-Methylated Cytosines: Model Systems for the Effects of the Sugar Moiety on the Stability of DNA i-Motif Conformation”,
    B. Yang, A. A. Moehlig, C. E. Frieler, and M. T. Rodgers, J. Phys. Chem. B 119, 1857-1868 (2015).
    DOI: 10.1021/acs.jcpb.5b00035


  104. (5)“Gas-Phase Conformations and Energetics of Protonated 2′-Deoxyadenosine and Adenosine: IRMPD Action Spectroscopy and Theoretical Studies”,
    R. R. Wu, B. Yang, G. Berden, J. Oomens, and M. T. Rodgers, J. Phys. Chem. B 119, 2795-2805 (2015).
    DOI:10.1021/jp509267k


  105. (-)“Guided Ion Beam and Computational Studies of the Decomposition of a Model Thiourea Protein Cross-Linker”,
    R. Wang, B. Yang, R. R. Wu, M. T. Rodgers, M. Schäfer, and P. B. Armentrout, J. Phys. Chem. B 119, 3727-3742 (2015).
    DOI: 10.1021/jp512997z


  106. (-)“Intrinsic Affinities of Alkali Metal Cations for Diaza-18-Crown-6: Effects of Alkali Metal Cation Size and Donor Atoms on the Structure and Binding Energies”,
    C. A. Austin M. T. Rodgers, Int. J. Mass Spectrom. 377, 65-72 (2015). History of Mass Spectrometry Special Issue.
    DOI:10.1016/j.ijms.2014.06.033


  107. (1)“Infrared Multiple Photon Dissociation Action Spectroscopy of Sodium Cationized Halouracils: Effects of Halogenation on Gas-Phase Conformation”,
    C. M. Kaczan, A. I. Rathur, R. R. Wu, Y. Chen, C. A. Austin, G. Berden, J. Oomens and M. T. Rodgers, J. Am. Soc. Mass Spectrom. 378, 76-85 (2015). Veronica M. Bierbaum Honor Issue
    DOI:10.1016/j.ijms.2014.07.016


  108. (1)“Base-Pairing Energies of Protonated Nucleoside Base Pairs of dCyd and m5dCyd: Implications for the Stability of DNA i-Motif Conformations”,
    B. Yang and M. T. Rodgers, J. Am. Soc. Mass Spectrom. 26, 1394-1403 (2015).
    DOI: 10.1007/s13361-015-1144-8


  109. (1)“On the Mechanism of Phosphodiester Backbone Cleavage in Gaseous RNA”,
    C. Riml, H. Glasner, M. T. Rodgers, R. Micura, and K. Breuker, Nucleic Acids Res. 43, 5171-5181 (2015).
    DOI: 10.1093/nar/gkv288


  110. (1)“N3 and O2 Protonated Tautomeric Conformations of 2′-Deoxycytidine and Cytidine: Coexist in the Gas Phase”,
    R. R. Wu, B. Yang, C. E. Frieler, G. Berden, J. Oomens, and M. T. Rodgers, J. Phys. Chem. B 119, 5773-5784 (2015).
    DOI: 10.1021/jp5130316


  111. (-)“Base-Pairing Energies of Proton-Bound Dimers and Proton Affinities of 1-Methyl-5-Halocytosine: Implications for the Stability of the DNA i-Motif”,
    B. Yang and M. T. Rodgers, J. Am. Soc. Mass Spectrom. 26, 1469-1482 (2015).
    DOI: 10.1007/s13361-015-1174-2


  112. (-)“Diverse Mixtures of 2,4-Dihydroxy Tautomers and O4 Protonated Conformers of Uridine and 2’-Deoxyuridine Coexist in the Gas Phase”,
    R. R. Wu, B. Yang, C.E. Frieler, G. Berden, J. Oomens, and M. T. Rodgers, Phys. Chem. Chem. Phys. Advance article (2015).
    DOI: 10.1039/c5cp02227d


  113. (-)“Discriminating Properties of Metal Alkali Ions towards the Constituents of Proteins and Nucleic Acids. Conclusions from Gas-Phase and Theoretical Studies”,
    M. T. Rodgers and P. B. Armentrout to appear in: Metal Ions in Life Sciences, Vol. 16, Springer, Eds. A. Sigel, H. Sigel, and R. K. O. Sigel, 2015.







image


image
image