Structural Determination and Evaluation of Theoretical Models and Basis Sets of Cisplatin-Amino Acid Analogues by IRMPD Action Spectroscopy

C.C. He,1 X. Bao,1 L. Hamlow,1 Y. Zhu,1 S. Strobehn,1 B. Kimutai,1 Y.-w. Nei,1 G. Berden,2 J. Gao,2 J. Oomens,2 C.S. Chow,1 and M.T. Rodgers1

1 Department of Chemistry, Wayne State University, Detroit, MI 48202
2 FELIX facility, Radboud University, 6525 ED Nijmegen, The Netherlands
Cisplatin

- Anti-cancer drug
- Chemical probe for structural RNA
- Resistance, neurotoxicity ...

Cisplatin
[cis-diamminedichloroplatinum(II)]

- Carrier ligands determine the adduct profile
- Purine N7 position; G > A
- Amino acids are great ligands

Lippert, B. *Cisplatin: Chemistry and Biochemistry of a Leading Anticancer Drug*; Verlag Helvetica Chimica Acta; Wiley-VCH: Zürich
Cisplatin Amino-acid Derivatives

- Shows preference to A over G
- Proven at the nucleoside and structural RNA level
- When binding to adenosine, two different isomers have been observed
- Simplicity and less flexibility
- Low computational cost

Chow Group and Rodgers Group, unpublished data
Instrumentation

(Infrared Multiple Photon Dissociation)
IRMPD Action Spectroscopy

Sample:
~1-7 mM Glyplatin
dissolved in
MeOH:H₂O (50:50)
no acid

IRMPD yield = (∑I_f)/(I_p + ∑I_f)

IRMPD Mechanism

- Rapid intramolecular vibrational relaxation.

- Initially absorbed photon energy is distributed through the ion and is ready for the next photon absorption.

- The ion continues to absorb photons and redistribute that energy until the dissociation threshold is reached.

- IRMPD requires the absorption of tens to hundreds of photons.

Hybrid Basis Sets

- **Density Functional Theory Methods**
 - B3LYP, CAM-B3LYP, LC-ωPBE, PBE0, B3PW91, mPW1PW91, M06
- **Treatment of Platinum (Pt)**
 - Effective Core Potential
 - All-Electron Basis Sets
- **Basis Sets for non-Metal Atoms**
 - Pople, def2, Dunning

EMSL Basis Set Exchange https://bse.pnl.gov/bse/portal
Basis Set for non-Metal Atoms

<table>
<thead>
<tr>
<th>Double Zeta</th>
<th>Pople</th>
<th>def2 (Ahlrichs)</th>
<th>Dunning</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-31G</td>
<td>def2-SVP</td>
<td>cc-pVDZ</td>
<td></td>
</tr>
<tr>
<td>6-31G(d)</td>
<td></td>
<td>aug-cc-pVDZ</td>
<td></td>
</tr>
<tr>
<td>6-31+G(d)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-31+G(d,p)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Triple Zeta</th>
<th></th>
<th>def2-TZVP</th>
<th>cc-pVTZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-311+G(d,p)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-311++G(d,p)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-311+(2d,2p)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-311+(3df,3dp)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quadruple Zeta</th>
<th>def2-QZVP</th>
<th>cc-pVQZ</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6-311+(2d,2p)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-311+(3df,3dp)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMSL Basis Set Exchange https://bse.pnl.gov/bse/portal
Gaussian 09
IRMPD Experiment for Glyplatin

B3LYP/def2-TZVPPD

Pt: def2 ECP (Effective Core Potential)

Scaling Factor: 0.98/0.95

[Pt(Gly-H)Cl\textsubscript{2}]- NO binding

[Pt(Gly-H)Cl\textsubscript{2}]- OO binding

[Pt(Gly-H)Cl\textsubscript{2}]- O binding

Frequency (cm-1)

Relative Intensity

Intensity
Basis Sets Evaluation for Glyplatin

B3LYP/LANL2DZ/varing Pt:LANL2DZ ECP

[Pt(Gly-H)Cl2]−

6-31G, 6-31G(d), 6-31+G(d), 6-31+G(d,p), 6-311+G(d,p), 6-311+G(2d,2p), 6-311+G(3df,3pd).

Experimental
Conclusions

• Best result with the lowest cost: B3LYP/mDZP/def2-TZVP
• Selected based on structural information, not necessarily good for energetic description
Sidechain Effects

![Graph showing the frequency vs. relative intensity for different complexes: [Pt(Gly-H)Cl2]−, [Pt(Orn)Cl]⁺, and [Pt(Lys)Cl]⁺. Each complex is represented by a line graph with peaks at specific frequencies.]

- [Pt(Gly-H)Cl2]−
- [Pt(Orn)Cl]⁺
- [Pt(Lys)Cl]⁺

The graphs display the frequency (cm⁻¹) on the x-axis and relative intensity on the y-axis.
Acknowledgements

Professor M. T. Rodgers
Professor Christine Chow
Rodgers group members
Xun Bao and Bett Kimutai (Chow group)
Dr. Cliff Frieler
Dr. Jos Oomens, Dr. Giel Berden and Juehan Gao
FELIX supporting staff
CLIO User Facility staff

Wayne State University
National Science Foundation

WSU C&IT
CLIO User Facility

Radboud Universiteit Nijmegen
FELIX Facility